Downloaded 12/03/14 to 129.120.242.61. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sci. STAT. COMPUT. © 1980 Society for Industrial and Applied Mathematics
Vol. 1, No. 2, June 1980 0196-5204/80/0102-0010 $1.00/0

LEAST ABSOLUTE DEVIATIONS CURVE-FITTING*

PETER BLOOMFIELD' anD WILLIAM STEIGER?

Abstract. A method is proposed for least absolute deviations curve fitting. It may be used to obtain
least absolute deviations fits of general linear regressions. As a special case it includes a minor variant of a
method for fitting straight lines by least absolute deviations that was previously thought to possess no
generalization. The method has been tested on a computer and was found on a range of problems to
execute in as little as 1/3 the CPU time required by a published algorithm based on linear programming.
More important, this advantage appears to increase indefinitely with the number of data points
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1. Introduction. The least absolute deviations method of curve-fitting consists of
fitting the model

(1) yi= 2 x0+e, i=1,...,n
to data (x;;,..., X, Vi, i=1,...,n) by choosing the parameters 6=(4,,...,6,) to
minimize the sum of absolute deviations,

) S(0)= X

i=1

k
Vi 2 xijoj'
=1

According to Eisenhart (1961), the minimization of a quantity like (2) was
suggested by Boscovitch in the mid-eighteenth century for fitting lines well before the
introduction of the method of least squares. Boscovitch added the condition that
the sum of the signed residuals be zero, which constrains the line to pass through the
centroid of the (x;, y;) points. He also described an algorithm for finding the slope of
the minimizing line, which can of course be used in conjunction with different
constraints such as that of a zero intercept.

More than one hundred years later, Edgeworth dropped the constraint and
proposed the fitting of lines and of more complicated models by unconstrained
minimization of (2). However, the computations are inherently more complex than the
solution of the linear equations that arise in the method of least squares, and
Edgeworth’s method does not seem to have been used widely.

A new method was introduced by Rhodes (1930) and discussed by Singleton
(1940), who also proposed an alternative. The development of linear programming
and the observation of Harris (1950) that the least absolute deviations fitting problem
could be turned into a linear programming problem was the next major advance. This
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line was pursued by Wagner (1959) and many others, including Barrodale and
Roberts (1973, 1974) and Narula and Wellington (1977). We comment on these
algorithms in §§4 and 5.

The current resurgence of interest in least absolute deviations methods is associa-
ted with the development of robust and resistant methods (see Huber, 1973 or
Andrews, 1974). That a least absolute deviations fit is less sensitive to extreme errors
than is a least squares fit was noted by Bowditch in an English translation of a work
by Laplace (see Eisenhart, 1961). Similar remarks have been made by Edgeworth and
by Rhodes (1930), who exhibited an example to support the point. While there are
techniques that are at the same time statistically more efficient in reasonable circum-
stances and even less affected by extreme errors, the conceptual simplicity of least
absolute deviations estimates and their competitive computational cost makes them
well worth considering. We note that these estimates are maximum likelihood and
hence asymptotically efficient in the (perhaps uncommon) situation when the errors
follow the double exponential Laplace distribution.

In addition to their use for robust estimation of regression equations, least
absolute deviations estimates could also be used as starting points for iterative
estimation schemes. Although this would be computationally more expensive than the
use of least squares estimates as starting points, the resistance of the procedure to
outliers would be improved.

Schlossmacher (1973) described a different relationship between iterative and
least absolute deviations methods. He pointed out that least absolute deviations
estimates could be found by iteratively reweighted least squares. However, numerical
tests have shown that this is a computationally expensive way to find an approximate
solution to a problem that admits exact solution. Abdelmalek (1971) suggested a
different approximate solution, namely minimization of the /,-norm with p approach-
ing 1 from above. This approach was found by Barrodale and Roberts (1973) to be
inefficient.

2. Minimizing the sum of absolute deviations. When there is only one degree of
freedom in the fit, such as when k=1 or when constraints are imposed as by
Boscovitch, the solution is straightforward. For

n

2 |y,—0x;|= 2 [x;||y:/x;— 8|,

i=1 i=1

and the minimizing value of @ is thus the weighted median of the ratios y,/x;, with
respect to weights | x;|. This weighted median may be defined as any value 6 such that

2 Ixl2 2 x| — 2 [ x;|

ity /x;=0 ityi/x;<0 ityi/x;>0

It may be found by ordering the ratios, and then summing the weights from one end
until the partial sum first exceeds or equals one half the total of the weights. The
corresponding ratio is the weighted median.

This shows that when k=1, § may always be taken to be one of the ratios y;/x;,
and that at least one of the residuals y,—0x; vanishes. In the general case there is a
solution @ for which at least r of the residuals vanish, r being the rank of X=(x,).
This is easily seen by a linear programming formulation of (2) (e.g. Wagner (1959)) or
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via a simple direct argument: Suppose 0=m <r residuals, y; —Ef_lx,. ;0> vanish, say
for i=i,,...,i,. Since m<r, there is a row, say the p™, not in the space spanned by
rows i,...,i,, and a vector & orthogonal to rows i,,..., i, but not row p. Thus the
functlonf(t) 2,_1|y,. —35_1x,;(0,+18))| is a sum with zero terms when i=i,,..., i,

and S(O))—f(O) Finally, write f(£)=37_,|w, —tv,|, where w,=y,~3Zk_ x, .6, and

v; —EJ,IXUSJ From the k=1 case, f is minimized for 7= [ yq/xq, and the ¢ term
of the sum is zero. Now S(0+t8) has m+ 1 zero residuals at i=i,,...,i, or i=q, and

S(0+18)=1(1)<f(0)=S(0), an argument that holds as long as m <r.

The problem of minimizing (2) is thus a discrete search problem. One need only
search the () combinations of r zero residuals, find an appropriate @ for each, and
evaluate S(0).

This observation motivates a simple method for solving the two-parameter
problem of fitting a straight line y =6, + 6, x. The method, described by Rhodes (1930)
and Karst (1958), is the basis of a computer algorithm published by Sadovski (1974).
First, a line is fitted to the data while constrained to pass through some arbitrary
point, such as the origin. As noted above, the fitted line must pass through at least one
data point. Next, a line is fitted while constrained to pass through the data point thus
identified (an arbitrary one in the case of multiplicity). This identifies a new point to
replace the previous one, and the algorithm continues. It terminates when the fitted
line does not change.

It is easily seen that the sum of absolute deviations goes down at each step, and
that no more than n—1 steps can be taken before termination. At some stages the
problem may be degenerate in the sense that more than two residuals are zero. Some
care must be taken so the algorithm does not cycle endlessly (see Sposito, 1976), or
terminate prematurely. Karst (1958) recognized the difficulties introduced by degener-
acy. The optimal line through P, may pass through P, and vice versa, and yet still not
be the overall optimum.

Narula and Wellington (1977) described a method based on linear programming
(in which, surprisingly, they readopted Boscovitch’s constraint that the fit should pass
through the centroid). They commented that the Karst/Sadovski technique does not
lend itself to regression problems with more parameters. There is, however, a very
natural extension that not only leads to an efficient numerical solution of the
problem, but also sheds light on the relationship of the least absolute deviations
problem to linear programming. This extension, based on the foregoing argument and
related to the descent method of Usow (1967), is described in the next section.

3. The method. Assume that n>k, and that X is of full rank. The basis of the
method is to search for a set of k data points such that the fit, when constrained to
make the corresponding residuals vanish, is optimal. As in the method described
above for k=2, this set of data points is found iteratively, by successive improve-
ments. In each iteration one point from the current set is identified as a good prospect
for deletion. This point is then replaced by the best alternative. This clearly gener-
alizes the 2-parameter technique. It is also related to the descent technique of Usow
(1967). The novel features of our method are

* an efficient method for finding optimal replacement, and
* a heuristic method for identifying the point to be deleted.



Downloaded 12/03/14 to 129.120.242.61. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LEAST ABSOLUTE DEVIATIONS CURVE-FITTING 293

(1) Replacement. Suppose that the rows of X=(x;;) that correspond to the current
set of points are x7,...,x}, and that x} has been identified for replacement. There is a
one-dimensional set of parameter values 0 that satisfy the remaining constraints

(3) v, =x70, i=1,....,k—1,

which we may parametrize as
0=0,+10,

where 6, is any arbitrary member of the set, and & satisfies
4 x78=0, i=1,...,k—1.

Within this set, the optimum may be found by minimizing

() 2 |5 —x[ (8, +18)]

i=1

with respect to the scalar ¢. Rewriting this objective function as

2 (3 =x78,) —1(x]8)],

i=1
one can minimize (5) by solving the one-dimensional problem of regressing y, —x’6,
on x!8. As was remarked earlier, this minimizing value of ¢ is the weighted median of

(v, —xT70,)/(x78), i=1,...,n,

with respect to the weights

x78|, i=1,...,n.

Thus the minimizing value of ¢+ may be found efficiently by using a weighted
version of the partial quick-sort procedure (see Chambers, (1971)). The next set of
parameter values may then be computed as 6,+¢8. Finally, the data point that
replaces x, is the point corresponding to the weighted median.

For 8,, we use the parameter values associated with x,,...,x,, for these satisfy (3)
and the additional equation with i=k. The vector & is determined up to scalar
multiples by (4).

(i) Deletion. A reasonable goal when deleting a point at some intermediate stage
would be to select that point which, when optimally replaced, leads to the largest
reduction in the objective function. However, we have found no reliable way to
identify this point short of trying all deletions. In tests, this “look ahead” approach
was more expensive than the heuristic method described below, and often did not lead
to fewer steps before termination.

Our heuristic method is based on gradients. The quantity (5) is a convex,
piecewise linear function of z. We examine the larger of its left-hand derivative at 0
and the negative of its right-hand derivative, which may be expressed as

(6) 2 w;— 2 Wil — 2 Wis
itr;<0 itr;>0 itr;=0
where
r=(7—x]6,)/x76
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and
w,=|x78|.

If (6) is negative, then the unique minimum of (5) is at =0, and thus if x, were
deleted, the same point would immediately reenter (or possibly a different point, but
still leading to no improvement in the objective function nor any change in the
parameter values). If (6) is zero, =0 is still a minimum, but there is an interval of
values all of which also minimize (5). Thus the objective function still cannot be
improved, although there are other sets of parameter values that give the same value.

We therefore avoid nonpositive values of (6). To convert the gradient into an
estimate of the amount by which (5) may be reduced, we multiply by a rough estimate
of the scale of the ratios r,. Since the numerators are the same in all the possible cases
at a given stage, we use the reciprocal of the sum of the denominators as this rough
estimate. Thus we use the quantity

EWi—EWi

r; <0 r;>0
Ewi

to measure the merit of deleting the given point, and we delete the point for which p is
largest.

We note that max (p,0) has some of the properties of an absolute correlation
coefficient between the residuals y,—x78, and the linear compound x”8:

_EW;‘

ri=0

(7 p=

* it lies between 0 and 1,

=it 1s O iff the (least absolute deviations) regression of the residuals on the
compound is null,

= it 1s 1 iff the signs of the residuals and the compound are all the same or all
opposite.

We make the calculation of (7) for each candidate for deletion economical by the
choice of 6,. For this is the same for each candidate, and hence the residuals need
only be computed once. For & we use the appropriate column of the inverse of the
kX k submatrix

(8) Z=

Thus, in evaluating the merit of deleting x; from the current set, we compute (7) using

the /™ column of Z~! for 8. Clearly this choice satisfies the requirement embodied in
@).

In addition, the partitioning of the residuals into negative, zero, and positive
values can be used as the first of the partitioning steps involved in the weighted
median calculation. This reduces the series length on the average by almost one half,
and leads to a further useful economy.
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To start the iteration, any set of k independent rows of X may be chosen, with
the appropriate 6,. However the following procedure is usually more efficient. Take
0=0, which corresponds to an empty set of data points. We then add variables in a
stepwise fashion, until we have a fit 6, and a corresponding set of k data points. At
each intermediate stage, the fit involves m variables, 0Sm <k, and a corresponding
set of m data points with zero residuals. We then have the option of including another
variable, thus increasing m to m+ 1, or improving the fit with m variables, using the
principles described earlier. Both of these alternatives may be carried out by regress-
ing the current residuals on some appropriate linear compound of the variables in the
problem.

Suppose variables v,,..., v,, are in the model corresponding to points iy,..., 7,
Thus the current m variable model has residuals y, —=7_,x,, 0, equal to zero when

J,

i=i,...,i,. If the criterion (7) is largest at variable p#i,,...,1i,,, p may be added to

the model as follows. Choose §=(4,..., 8, 5,,, ;) orthogonal to (x,, ..., x;, , x,,) for
i=iy,...,i,, which, since there are only m of them, can clearly be done. The function
f()=2y, —ZJ_ \x;, (0, +18)—tx,,8,,, | is a sum with zero terms when i=iy,..., i,

and £(0) is the sum of absolute deviations at the current fit. If we write f(O)=Z|w, —tu;|,
where w; =y, =27, x,, 0, and u;, =37, x,;, §; +x,,6,,,, it is clear that fis minimized at

A iv,’j Jj=1 v, 'm "
a value of r=t=w, /u, and that the g"™ term of the sum is then equal to zero. Hence
we have an m+ 1 variable model (0,0) +¢d based on variables v,,..., v,,, p and points
iys...,1,,q corresponding to zero residuals.

On the other hand if (7) is largest for variable v,, say, the corresponding point i »
is deleted and replaced in the manner already described; an improved m variable
model results. In any case it is the criterion (7) that determines whether we step up to
a larger model or improve the current one without stepping up.

The mechanism described above for identifying a point to be dropped may give
false indications of convergence in the presence of degeneracy. Degeneracy occurs
when k' > k residuals vanish at a given stage. In this case, there are (') sets of points
that all give the same fit. However, it is possible that not all of them can be improved
by replacing a single point. To guard against the possibility of arriving at such a set of
points and incorrectly concluding that the minimum has been reached, we examine all
the sets before allowing the procedure to terminate.

4. Relationship to linear programming. From a computational standpoint two sets
of quantities are required for the deletion phase, the residuals y, —x70 and the weights
|x,.T8|, i=1,...,n. There are k different sets of weights, one for the value of &
associated with the point in the current set being tested for deletion. Further, the &
different & values are the columns of Z~! in (8). The needed weights are thus the
inner products of the rows of X with the columns of Z !, the inverse of the submatrix
of X corresponding to the data points in the current set. These quantities may be
computed and updated easily by using the pivor operation of linear programming.

We begin with the bordered matrix (X:y). By pivoting on an entry in the X
portion of this array, we mean first scaling the column in which that entry appears to
make its value one, and then subtracting multiples of that column from each other
column, to make the remaining entries in that row vanish. If we pivot on one entry in
each row of the desired submatrix, with one entry also in each column, we obtain an
array in which X has been replaced by the necessary inner products, and y has been
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replaced by the residuals from the corresponding fit. For X has effectively been
post-multiplied by a matrix that has reduced the relevant submatrix to the identity
matrix, which must therefore be the desired inverse. Also, y has had multiples of the
columns of X subtracted from it to make certain entries vanish, and hence has been
replaced by the residuals from the corresponding fit.

When one point is replaced by another, we can adjust the array by a single
additional pivot. If we pivot on that entry in the new row that falls in the same
column as the unit entry in the old row, then the rows corresponding to the other
points in the current set are unaffected, and hence the resulting array again contains
all the values needed in the next step of the solution.

This pivoting operation is, of course, precisely the operation used in updating
bases in the simplex method of linear programming. The question arises as to how
well one can do using linear programming techniques. Initially, solutions by linear
programming required the introduction of additional variables and constraints, as in
the formulation:

n
minimize Y, e;
i=1

subjectto  ¢,2 y,— X x;;0;,

Such solutions must inevitably operate with larger arrays than our method, and are
not of comparable efficiency.

Another algorithm by Barrodale and Roberts (1973) seems to have been the
best available method for solving (2). It appears to be closely related to linear pro-
gramming but avoids the extra variables and constraints necessary in the direct
formulation, above. However, as the next section strongly suggests, the present
algorithm is much more efficient. It seems to be faster than the Barrodale-Roberts
algorithm, and the relative advantage increases indefinitely with the size of the
problem (2).

5. Computational aspects. In assessing the computational cost of the proposed
least absolute deviations algorithm, it will be useful to compare it to ordinary least
squares. For this purpose, we take the number of multiplication or division operations
as a measure of complexity.

To find 0 in (1) with ordinary least squares, the k normal equations can be
obtained at a cost of (k— 1)(k+2)n/2 operations and solved in k*/3+ O(k?) opera-
tions. By way of comparison, the computations involved in a single step of our
algorithm are

* 2n(k—1) comparisons and n(k— 1) additions, to find the pivot column,

* finding the weighted median of the n ratios, which takes a number of compari-
sons and exchanges of the order of n log n and not more than »n additions, and

* n(k+ 1) multiplications and nk additions in the updating operation.
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TABLE 1
An illustrative set of data from Karst (1958).
1 2 3 4 5 6 7
X 12 18 24 30 36 42 48
y 5.27 5.68 6.25 7.21 8.02 8.71 8.42

If the least absolute deviations algorithm terminates at step N, the computational cost
would be roughly

©) N(nk + effort for weighted median),
while ordinary least squares would require
(10) n(k—1)(k+2)/2+k3/3+0(k?).

It is difficult to carry out the comparison further because we do not know how N
depends on n, k, and X. However, it is clear that as long as N is comparable to k/2
and k2/(2 log n), the costs of ordinary least squares and our least absolute deviations
algorithm will be comparable.

The remainder of this section is devoted to the question of how (9) might grow
with n, k for certain specific or randomly presented curve fitting problems X.
However, instead of counting operations as in (9), we will measure complexity by the
CPU time for executing the algorithm and compare this with other procedures for
computing or approximating least absolute deviations fits.

To compare our “exact” procedure with that of Schlossmacher, consider the
problems of obtaining a k=2 dimensional fit for the data of Table 1. In this problem
the iterated least squares technique converged to a good approximation in 7 steps,
while our least absolute deviations algorithm required 2. Although each of our
iterations may be more work than a single step of the iterated least squares procedure,
in view of (9) and (10) one expects our algorithm to find the exact fit in less time than
that needed for convergence of the iterated least squares approximation.

Finally we performed Monte-Carlo experiments to compare our algorithm with
the best available competition, that of Barrodale and Roberts (1974). The results are
interesting and bear careful study.

For the model Y=6,+6,X,+--- +6, X, + U,6,=Vi, a sample X of size n was
generated in the following way. For each i=1,..., n, successive random numbers'
X Xigs- s Xig» U; were generated and Y,=60,+6, X, +,..., +6, X, + U, formed. From
this sample X, LAD estimators § were computed with the Barrodale-Roberts algo-
rithm and the present one, and the CPU times and numbers of iterations recorded.
Since the Barrodale-Roberts iteration also exchanges one set of k zero residuals for
another, it is sensible to compare iteration counts. In addition it may help to explain
differences in the CPU times.

The above process was repeated for a total of 10 samples of size n. So that the
comparisons do not depend too strongly on a particular sequence produced by the
random number generator, the total CPU times and total iteration counts are
compared.

1The FORTRAN function RAN of the DEC system 20 was used in this task.
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Finally to explore the effect of the distribution of the point cloud X on the
complexity of obtaining the LAD fits, three distributions for the X ’s and U were used.
The first two are from the family of Pareto densities f(¢)=1/(1+1¢)'**¢20,a>0.
For a>1 the mean exists and equals a/(a—1), and thus the density

f)=a/[1+(t=c)]""*, tZe=a/(a—1),

is Pareto and centered at the mean.

We generated X ’s and U using this density, first when a=1.2, and second when
a=22. In the former case the variance is infinite, while in the latter, though the
density is long-tailed, the variance is finite. Finally, in a third set of experiments we
used X ’s and U from the unit normal distribution.

The results are in Tables 2, 3, and 4. In each table, each cell, (n, k) has the total
CPU time for the 10 samples and the total iteration count used by both the present
algorithm, labeled LAD, and the Barrodale-Roberts algorithm, labeled BAR. Inciden-
tally, the experiment reported in each cell of each table employed a different seed for
the random number generator.

The results are rather striking. As the size n of the point cloud increases, our
algorithm gains relative advantage over the Barrodale-Roberts method, for each k and
with all underlying distributions. More specifically, the tables suggest that LAD(n),
the CPU time of our algorithm, grows linearly with n, while BAR(#n), the CPU time
for Barrodale-Roberts grows faster than linearly, perhaps like n log n or n. The three
tables would support

LAD(n)=C,(U)n,

BAR(n)=d,(U)-nlogn or d,(U)-n?,

TABLE 2
Total CPU time and iteration counts for 10 sets of LAD estimates, Pareto distribution, a=1.2.
k
2 3 6
BAR LAD BAR LAD BAR LAD
.76 .79 1.20 1.10 2.77 3.19
100
34 42 58 34 119 71
3.08 2.34 4.74 4.10 11.20 10.79
300
38 45 68 60 148 83
8.42 4.51 12.04 7.44 25.10 20.07
n 600
44 40 65 49 136 78
24.33 10.18 34.89 16.27 71.72 44.69
1200
45 52 71 61 167 109
47.22 14.34 72.00 2291 136.14 68.57
1800
41 48 77 53 163 108
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TABLE 3
Total CPU time and iteration counts for 10 sets of LAD estimates, Pareto distribution, a=2.2.
k
2 3 6
BAR LAD BAR LAD BAR LAD
.81 .83 1.21 1.31 291 341
100
43 51 63 51 140 84
2.83 2.51 4.53 4.15 10.41 11.33
300
43 54 71 64 141 112
7.35 5.64 11.18 8.08 2591 23.87
n 600
43 66 67 61 159 125
22.57 11.07 33.47 18.17 79.89 56.05
1200
52 60 87 78 231 165
40.41 17.41 63.99 24.87 139.81 89.77
1800
38 69 80 65 214 183
TABLE 4
Total CPU time and iteration counts for 10 sets of LAD estimates, Gaussian distribution .
k
2 3 6
BAR LAD BAR LAD BAR LAD
5 98 1.40 1.55 3.83 4.41
100
29 57 75 61 185 124
2.59 3.17 5.21 5.61 15.28 16.04
300
33 67 85 96 245 184
6.62 6.50 12.65 10.89 41.49 35.15
n 600
42 70 93 92 322 222
17.33 13.05 37.06 23.62 105.92 70.27
1200
47 67 121 104 341 219
29.63 19.52 68.93 34.66 182.80 121.88
1800
46 71 120 102 328 274
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where C,(f), di(f) are constants that both increase with k and each depends on f,
the distribution of the X ’s and U (but in different ways to be mentioned presently). In
fact, it seems reasonable to assert that

BAR(n) =a( f) times an increasing function of n,

LAD(n)
where a( f) is a constant depending only on the point cloud’s density, f; thus, both
C(f) and d,(f) increase with k in the same way.

Finally, it is interesting to observe that f affects the algorithms in different ways:

(1) LAD is best for “spread out” point clouds, a=1.2, and worst for the normal
data;

(2) BAR s best for finite variance but long-tailed point clouds, a=2.2, and worst,
sometimes in the normal case, sometimes in the infinite variance case, a=1.2. In any
event, the relative advantage of LAD is greatest when a= 1.2, when the data are most
heavy-tailed.

These observations are tentative, as there is little evidence to base such exact
assertions upon. Nevertheless, it seems safe to claim that our algorithm has an
increasing asymptotic advantage over Barrodale and Roberts as n, the number of
points being fit, increases. More strongly,

BAR(n)
LAD(n) 7

as n—o0. It would be interesting to study the ratio for more values of k and other
types of distributions.
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